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Abstract

There are two classical ways of constructing integrable systems by means of
bi-Hamiltonian structures. The first one supposes nondegeneracy of one of
the Poisson structures generating the pencil and uses the so-called recursion
operator. This situation corresponds to the absence of Kronecker blocks
in the so-called Jordan–Kronecker decomposition. The second one, which
corresponds to the absence of Jordan blocks in this decomposition, uses the
Casimir functions of different members of the pencil. In this paper, we consider
the general case of a bi-Hamiltonian structure with both Kronecker and Jordan
blocks and give a criterion for the completeness of the corresponding family
of functions. This result is related to a natural action of some Lie algebra
which gives a symmetry of the whole pencil. The criterion is applied to
bi-Hamiltonian structures related to Lie pencils, although we also discuss other
possible applications.

PACS numbers: 02.40.Ma, 02.30.Ik

1. Introduction

We start with a short ‘physical’ motivation. Consider the n-dimensional free rigid body system
on g = so(n, R). Here we describe this as a Hamiltonian system. The Poisson bracket is the
canonical Lie–Poisson one. The Hamiltonian function after identifying g∗ with g by means
of the ‘trace form’ becomes H(M) = (1/2) Tr(M · L−1M),M ∈ g. Here L is an operator on
g defined by L : M �→ DM + MD,D being the ‘inertia’ matrix of the rigid body, a diagonal
matrix. We assume that D has a positive simple spectrum (cf Morosi and Pizzocchero (1996)).
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There are several approaches to studying the complete integrability of this system. ‘The
argument translation method’, which goes back to Manakov (1976) and was fully developed by
Mishchenko and Fomenko (1978), uses integrals of the form Tr((M + λD2)k). Note that these
integrals are related to the Poisson pencil defined on sl(n, R) ⊃ so(n, R) that is generated by
two Poisson structures: the Lie–Poisson structure ϑsl(n,R) and the constant one obtained by
‘freezing’ ϑsl(n,R) at the point D2 ∈ sl(n, R).

Another approach, proposed by Bolsinov (1992) (see also Morosi and Pizzocchero
(1996)), exploits the another Poisson pencil. It is defined on so(n, R) itself and is generated
by two Lie–Poisson structures: one related to the standard commutator [ , ] on g and another to
the modified commutator [ , ]D2 , [X, Y ]D2 := XD2Y − YD2X. The corresponding integrals
are of the form Tr(((I + λD2)−1/2M(I + λD2)−1/2)k) (cf subsection 4.3). Although looking
differently from that defined above these integrals in fact define the same invariant tori (for
gl(n, R) the similar fact is proved in Panasyuk (2006, proposition 5.3).

Now assume that the matrix D has multiplicities in its spectrum. In general neither of
the above series of integrals is sufficient for the Liouville integrability of the system in this
case. However, the nonsimplicity of the spectrum of D is equivalent to the existence of inner
symmetries of the body. In order to prove the complete integrability of the system one can
add to the above-mentioned integrals the Noether integrals induced by these symmetries. One
can prove the completeness of the new set of integrals consisting of the ‘usual ones’ (i.e.,
the Manakov or Bolsinov ones) and a maximal commutative subset of the set of the Noether
integrals (Trofimov and Fomenko 1995, section 44).

The aim of this paper is to develop a similar method of combining ‘usual integrals’ with
‘Noetherian integrals’ in the more general setting of bi-Hamiltonian structures with ‘inner
symmetries’ (this method is then applied to particular bi-Hamiltonian structures among which
there are the above examples).

More precisely, we consider a class of Poisson pencils Θ := {ϑt }t∈C
2 , i.e. two-dimensional

linear subspaces in the set of Poisson bivectors on a given manifold M (assume for simplicity
that we work in the complex analytic category), with the following additional condition: the
set EΘ(x) := {t ∈ C

2 | rank ϑt
x < maxt rank ϑt

x} does not depend on x ∈ M . The Poisson
pencils with this condition are called admissible (see definition 2.2.5 for more details) and the
set EΘ := EΘ(x) is called exceptional and it turns out that it is at most a finite sum of one-
dimensional subspaces Span{t1} ∪ · · · ∪ Span{tn} ⊂ C

2 (see subsection 2.2). The inner
symmetries mentioned are provided by the Hamiltonian vector fields ϑt0(f ), where
ϑt0 , t0 	∈ EΘ , is a fixed Poisson bivector of the maximal rank and f runs through the
spaces Z t1 , . . . ,Z tn of the Casimir functions of the exceptional bivectors ϑt1 , . . . , ϑtn (see
subsection 2.3).

It is well known that the functions from the space ZΘ := Span
{⋃

t 	∈EΘ
Z t
}

of Casimirs
of nonexceptional bivectors are in involution with respect to ϑt0 and form a complete set
if and only if EΘ = {0}. If the last condition holds the pencil is called micro-Kronecker
(Zakharevich 2001). If EΘ 	= {0} the set ZΘ is in general incomplete. If this is the case, one
can try add to ZΘ functions from the family ZΘ

E := Z t1 + · · · + Z tn (they commute with those
from ZΘ ). However, ZΘ

E is in general a noncommutative Lie subalgebra with respect to the
Poisson bracket related to ϑt0 . Thus one can try to pick up an Abelian subalgebra A ⊂ ZΘ

E

and ask whether the commutative family ZΘ + A is complete.
Note that in general the problem of choosing an (large enough) Abelian subalgebra A in

an infinite-dimensional Lie algebra ZΘ
E can be very complicated.

In our approach we propose both a method of choosing an Abelian subalgebra A and a
criterion of completeness of the family of functions ZΘ + A.
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The method of choosing an Abelian subalgebra A ⊂ ZΘ
E consists of fixing an appropriate

finite-dimensional Lie subalgebra z ⊂ ZΘ
E . The functions on z∗ can be interpreted as elements

of ZΘ
E , and the space of these functions E(z∗) forms a Lie subalgebra in ZΘ

E . Thus one can
pick up a maximal Abelian Lie subalgebra A(z) ⊂ E(z∗) using one of the several standard
methods (for instance, the above-mentioned method of argument translation). It turns out that
in the main applications of our general scheme there is a natural choice of finite-dimensional
subalgebra z and in many examples the number of independent functions from the family
ZΘ + A(z) is sufficient for obtaining a completely integrable system.

The first main result of this paper (theorem 2.2.10) gives necessary and sufficient
conditions for the completeness of the commutative set ZΘ + A(z). These conditions are
formulated in purely linear algebraic terms reflecting the structure of the so-called Jordan–
Kronecker decomposition of a Poisson pencil at a point (see subsection 3.3).

The main result is then applied to Poisson pencils related to Lie pencils, i.e. linear
2-parameter families of Lie brackets on a given vector space. Given a Lie pencil � :=
{gt }t∈C

2 , gt := (g, [ , ]t ), let Θ� denote the Poisson pencil on g∗ consisting of the corresponding
Lie–Poisson structures. Then, under some additional assumptions on � (for instance if there
is a semisimple Lie algebra among gt ), Θ� is admissible. In such a case we have distinguished
Lie algebras gtj , j = 1, . . . , n, whose index is smaller than that of the generic Lie algebra
of the pencil. We also have a distinguished subalgebra z ⊂ ZΘ�

E in this case: z := ∑n
j=1 zj ,

where zj is the center of gtj . Our second main result (theorem 4.1.3) gives necessary and
sufficient conditions for the completeness of the family of functions ZΘ� enlarged by a
maximal involutive set of functions from E(z∗).

Note that some sufficient conditions for the completeness of such a family were given by
Bolsinov (Trofimov and Fomenko 1995, proposition 7, section 44). They look as follows:

ind gtj = ind gt0 + dim zj − ind zj , j = 1, . . . , n,

where zj is regarded as a subalgebra in gt0 . The author’s interest to the subject was encouraged
by finding an example of a Lie pencil for which these conditions are not satisfied but the
corresponding family of functions is complete. This example (see subsection 4.3), as well as
some other ones, is presented in section 4. Our necessary and sufficient conditions are more
general than the conditions of Bolsinov and the latter ones follow from the former ones (see
theorems 2.2.11 and 4.1.4).

The paper is organized as follows. In subsection 2.1 we recall some notions related to
Poisson structures and integrable systems on Poisson manifolds. Subsection 2.2 is devoted to
introduction to the geometry of bi-Hamiltonian structures and the formulation of main results.
In subsection 2.3 we give an interpretation of the main results in terms of symmetries of the
underlying bi-Hamiltonian structure.

Section 3 is devoted to the proof of the main results. It is divided into three subsections
in which we present different aspects of the linear algebra of a pencil of bivectors on a vector
space. In subsection 3.2 we formulate the linear algebraic counterpart of the main result and
in subsection 3.3 we prove it with the help of the ‘main tool’, the so-called Jordan–Kronecker
decomposition.

In section 4 we reformulate our main theorem in the context of Lie pencils and present
some examples of its applications.

We conclude section 1 by mentioning that another field of applications of the main
result is the above-mentioned argument translation method. In this method the following
bi-Hamiltonian structure is considered. If g is a Lie algebra and a ∈ g∗ is a fixed element,
we put ϑ1 for the canonical Lie–Poisson structure ϑg on g∗ and ϑ2 := ϑg(a). Consider a
Poisson pencil Θ generated by ϑ1, ϑ2. If a is a singular element, i.e. belonging to a coadjoint
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orbit of nonmaximal dimension, the above-mentioned involutive set of functions ZΘ can be
incomplete (as in the example of a free rigid body). However, we can enlarge this family
by the family Z t1 of the Casimir functions of bivector ϑ2 (which is the only ‘exceptional’
bivector in the pencil) some of which do not belong to ZΘ . Note that here we have a natural
finite-dimensional Lie subalgebra z in Z t1 , the stabilizer of a, and we can apply our main result
for studying the completeness of the family ZΘ + A(z).

Also, the main result can be applied to the so-called method of symmetric pairs (combining
the method of Lie pencils and the argument translation) Bolsinov (1992) and to other bi-
Hamiltonian structures of algebraic nature.

2. Bi-Hamiltonian structures with symmetries

2.1. Preliminaries on Poisson structures

In this subsection we give some definitions from the theory of Poisson structures. We refer
the reader to the book da Silva and Weinstein (1999) for more details.

For simplicity in this paper we will work in the real analytic or complex analytic category.
In the last case we will consider manifolds with sufficiently many holomorphic functions (for
instance Stein manifolds). The ground field will be denoted by K.

So M denotes a connected analytic manifold, E(M) stands for the space of analytic
functions on M.

Definition 2.1.1. Let (M, ϑ) be a Poisson manifold. We regard ϑ as a morphism T ∗M → T M .
We define rank ϑx as dim imϑx and corank ϑx as dim ker ϑx . We put rank ϑ := maxx∈M rank ϑx

and corank ϑ := dim M − rank ϑ .
A symplectic leaf S of ϑ is called regular if dim S = rank ϑ . We denote by Sing ϑ the

union of nonregular symlectic leaves.

We write {, }ϑ for the Poisson bracket corresponding to a Poisson structure ϑ and Zϑ(U)

for the set {f ∈ E(U) | ϑ(df ) ≡ 0} of Casimir functions of ϑ over an open set U ⊂ M .

Definition 2.1.2. A set Z ⊂ Zϑ(U) of Casimir functions over an open set U ⊂ M is called
complete as a set of Casimir functions if there exist f1, . . . , fk ∈ Z such that their differentials
are independent on U\(U ∩ Sing ϑ), where k = corank ϑ .

In other words, Z is complete if and only if the common level sets of functions from Z coincide
with the symplectic foliation on U\(U ∩ Sing ϑ). It is clear that Zϑ(U) can be incomplete if
the closure of some regular symplectic leaf in M is a submanifold of dimension greater than
that of the leaf. On the other hand, Zϑ(U) is always complete for sufficiently small U.

Definition 2.1.3. A set I ⊂ E(U) of functions over U ⊂ M is called involutive with respect
to ϑ if {f, g}ϑ = 0 for all f, g ∈ I . An involutive set I of functions over U is called complete
as an involutive set of functions if there exists an open dense subset V ⊂ U such that the
subspace Span{dxf | f ∈ I } ⊂ T ∗

x M is of dimension dim M − (1/2)rank ϑ for any x ∈ V .

If I is complete as an involutive set of functions over U, then I |V ⊃ Zϑ(V ) and the last set
is complete as a set of Casimir functions. Any such set I is a set of functions constant on
a foliation of V \(V ∩ Singϑ) of dimension (1/2)rank ϑ which is Lagrangian in any regular
symplectic leaf. Completeness of an involutive set I can also be interpreted in the following
way: for any x ∈ V \(V ∩ Singϑ) the subspace Span{dxf | f ∈ I } ⊂ T ∗

x M is maximal
isotropic with respect to the 2-form ϑx (see definition 3.1.2).
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Remark 2.1.4. A subset Z ⊂ E(M) will be called functionally closed if any finite functional
combination of functions from Z belongs to Z. In particular, a set of functions constant
along some generalized foliation (for instance, foliation of symplectic leaves of some Poisson
structure) in M is functionally closed.

Now assume we have a Poisson structure (M, ϑ) and two Lie subalgebras z ⊂ Z of the
Lie algebra (E(M), {, }ϑ) such that z is finite dimensional and Z is functionally closed. Then
the set of functions E(z∗) endowed with the Lie–Poisson bracket can be regarded as a Lie
subalgebra in Z. Indeed, elements of z can be interpreted as linear functions on z∗. Functions
from E(z∗) are functional combinations of these linear functions, thus by functional closedness
of Z lie in Z. Finally, the fact that E(z∗) is a Lie subalgebra follows from the basic properties
of the Poisson bracket.

2.2. Preliminaries on bi-Hamiltonian structures and formulation of main results

Given a Poisson bivector field (bivector for short) ϑ on M; let Eϑ(M) denote the space E(M)

regarded as a Lie algebra with respect to the Poisson bracket {, }ϑ .

Definition 2.2.1. Let a pair (ϑ(1), ϑ(2)) of linearly independent bivectors on a manifold M be
given. Assume ϑt := t (1)ϑ(1) + t (2)ϑ(2) is a Poisson bivector for any t = (t (1), t (2)) ∈ K

2. We
say that the Poisson structures ϑ(1), ϑ(2) are compatible (or form a Poisson pair) and that the
whole family Θ := {ϑt }t∈K

2 is a bi-Hamiltonian structure or a Poisson pencil.

Given a bi-Hamiltonian structure {ϑt } on M, we will write E t (M),Z t (M), {, }t , etc instead
of Eϑt

(M),Zϑt

(M), {, }ϑt

, etc for short.

Definition 2.2.2. Let Θ = {ϑt } be a bi-Hamiltonian structure on M and x ∈ M .
Put EΘ(x) = {

t ∈ C
2
∣∣ rank ϑt

x < maxt∈C
2 rank ϑt

x

}
(in the real category we regard

ϑt = t (1)ϑ(1) + t (2)ϑ(2) as a section of the complexification of the tangent bundle on M).
The set EΘ(x) is called exceptional for Θ at x.

Remark 2.2.3. The set EΘ(x) is either {0} or the union of a finite number of lines in C
2.

Definition 2.2.4. Let Θ = {ϑt } be a bi-Hamiltonian structure on M. It is called Kronecker
at a point x ∈ M if rank ϑt

x is constant with respect to t ∈ C
2\{0}, i.e. EΘ(x) = {0} (cf

definition 3.2.1). We say that Θ is micro-Kronecker if it is Kronecker at any point of some
open dense set in M.

Definition 2.2.5. Assume that, given a bi-Hamiltonian structure Θ , there exists an open
dense set U ⊂ M such that EΘ(x) =: EΘ does not depend on x ∈ U . We will call such a
bi-Hamiltonian structure admissible.

Remark 2.2.6. Note that micro-Kronecker bi-Hamiltonian structures are admissible. From
now on we will consider only bi-Hamiltonian structures Θ = {ϑt } that are admissible and are
not micro-Kronecker. We will assume that EΘ = Span{t1}∪ · · ·∪ Span{tn}, where ti ∈ C

2 are
pairwise nonproportional. We will say that the values of t ∈ EΘ are exceptional and the other
ones are generic. The same terms will be used for the corresponding bivectors ϑt , Poisson
brackets {, }t , etc.

Lemma 2.2.7. Let Θ = {ϑt } be an admissible bi-Hamiltonian structure on M. Fix an arbitrary
t0 ∈ K

2. Then for any open set U ⊂ M

(1) The set of functions Z t (U) is a Lie subalgebra in E t0(U) for any t.

5
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(2) The subalgebra Z t (U) is Abelian for any t 	∈ EΘ .
(3) {Z t ′(U),Z t ′′(U)} = 0 for any nonproportional t ′, t ′′.

Remark 2.2.8. The proof of 1 could be found in Trofimov and Fomenko (1995,
proposition 4, section 44), and 2 and 3 follow from lemma 3.2.3.

Now assume we work in the complex category.

Corollary 2.2.9.

(1) The set of functions

ZΘ(U) := Span

( ⋃
t∈C

2\EΘ

Z t (U)

)

is an Abelian subalgebra in E t0(U) for any t0 ∈ C
2.

(2) Let t0 ∈ C
2\EΘ and I i ⊂ Z ti (U) be an Abelian subalgebra in (Z ti (U), {, }t0). Then the

set

I1 + · · · + In + ZΘ(U)

is an Abelian subalgebra in E t0(U).

Let t0 ∈ C
2\EΘ and let U ⊂ M be a sufficiently small open set. Since Θ is non-micro-

Kronecker (see remark 2.2.6), by the criterion of Bolsinov (1992) (see also theorem 3.2.5)
the set ZΘ(U), which is an Abelian subalgebra in E t0(U), is not complete as an involutive
set of functions (see definition 2.1.3). Our main result (theorem 2.2.10) gives a criterion of
completeness for the more general Abelian subalgebra I1 +· · ·+In +ZΘ(U), thus generalizing
the criterion of Bolsinov.

In order to formulate our main result we need the following notions. Let zi ⊂ Z ti (U), i =
1, . . . , n, be a fixed finite-dimensional subspace of the Lie algebra (Z ti (U), {, }t0). Given a
point x ∈ U , introduce for any i ∈ {1, . . . , n} the subspaces

zi
x := {dxz | z ∈ zi} ⊂ T ∗

x M (2.1)

z0,i
x := {

v ∈ zi
x

∣∣ ∃w ∈ T ∗
x M: ϑt0

x (v) = ϑti
x (w)

}
(2.2)

and the skew-symmetric forms

γzi ,x :
∧2

z0,i
x → C, γzi ,x(v1, v2) := 〈

ϑti
x (w1), w2

〉
, (2.3)

where wj ∈ T ∗
x M are any elements such that ϑt0

x (vj ) = ϑti
x (wj ), j = 1, 2 (〈, 〉 stands for the

natural pairing between vectors and covectors). Note that these forms are correctly defined.
Indeed, if w′

j are another elements with ϑt0
x (vj ) = ϑti

x (w′
j ), we have uj := wj − w′

j ∈ ker ϑti
x

and
〈
ϑti

x (w′
1), w

′
2

〉 = 〈
ϑti

x (w1 + u1), w2 + u2
〉 = 〈

ϑti
x (w1), w2

〉
.

Theorem 2.2.10. Let Θ be an admissible bi-Hamiltonian structure on M (see definition 2.2.5
and remark 2.2.6) in the complex category. Assume U ⊂ M is a connected open set such that
Z t (U) is complete as a set of Casimir functions (see definition 2.1.2) for an infinite number of
pairwise nonproportional values of t ∈ C

2\EΘ .
Let t0 ∈ C

2 be generic and let Z ti (U), i = 1, . . . , n, be endowed with the Lie algebra
structure induced from E t0(U).

Assume that for any i ∈ {1, . . . , n} a finite-dimensional subalgebra zi ⊂ Z ti (U) has
been chosen and that I i ⊂ E((zi )∗) is a complete involutive set of functions with respect to

6
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the canonical Lie–Poisson structure on (zi )∗ (thus I i can be regarded as an involutive set of
functions in Z ti (U) ⊂ E t0(U), see remark 2.1.4).

Then the involutive set of functions I := I1 + · · ·+In +ZΘ(U) is complete as an involutive
set of functions with respect to ϑt0 if and only if there exists x ∈ U such that

corank ϑt0
x

∣∣
zi

x

+ corank ϑt0
x = 2 dim z0,i

x − dim zi
x − rank γzi ,x + corank ϑti

x , i ∈ {1, . . . , n}.
(2.4)

Proof. By theorem 3.2.6 condition (2.4) is equivalent to the maximality with respect to ϑt0
x of

the isotropic space generated by the differentials at x of the functions from I. This maximality,
being an open condition, in turn is equivalent to the completeness of the involutive set I in
some neighborhood V of x, which is dense in U (since we are in analytic category). �

In the next theorem we formulate two sufficient conditions for the completeness of the
above-mentioned involutive set of functions, which are less general but can be more easily
checkable.

Theorem 2.2.11. In the assumption of theorem 2.2.10 the involutive set of functions I is
complete as an involutive set of functions with respect to ϑt0 if there exists x ∈ U such that
one of the following two conditions hold:

(1) corank ϑt0
x = dim z0,i

x − dim zi
x − rank γzi ,x + corank ϑti

x , i ∈ {1, . . . , n};
(2) corank ϑt0

x = corank ϑt0
x

∣∣
zi

x

− dim zi
x + corank ϑti

x , i ∈ {1, . . . , n}.

Proof. Proof of this theorem follows from theorem 3.2.7. �

Remark 2.2.12. In the real category theorems 2.2.10, 2.2.11 remain true if t0, t1, . . . , tn ∈ R
2

(and the set ZΘ is substituted by ZΘ
R

(U) := Span(
⋃

t∈R
2\EΘ

Z t (U))).

2.3. Interpretation of the main result from the point of view of symmetries

The following theorem will provide us with a specific interpretation of the families of functions
I i which appeared in the main theorem. The reader is referred to books Ortega and Ratiu
(2004) and da Silva and Weinstein (1999) for notions related to Hamiltonian actions. We will
write χ(M) for the space of analytic vector fields on M. If the category is real we assume
t0, t1, . . . , tn ∈ R

2.

Proposition 2.3.1. Let Θ = {ϑt } be an admissible bi-Hamiltonian structure on M, let t0 ∈ K
2

be generic and let Z ti (M), i = 1, . . . , n, be endowed with the Lie algebra structure induced
from E t0(M).

Then for any i ∈ {1, . . . , n}
(1) The Lie algebra action ρ0,i : Z ti (M) → χ(M), f �→ ϑt0(f ), is Hamiltonian with respect

to any ϑt , where t is linearly independent with ti (in particular, t can be any generic).
(2) The momentum map of the action ρ0,i with respect to ϑt is given by the formula

J t
0,i : M → (Z ti (M))∗, J t

0,i (x) = (f �→ at,if (x)), where x ∈ M and at,i is the
first of two constants uniquely defined by ϑt0 = at,iϑ

t + bt,iϑ
ti .

Proof. Let t ∈ K
2 be linearly independent with ti . Then there exist at,i , bt,i ∈ K such that

ϑt0 = at,iϑ
t + bt,iϑ

ti , at,i 	= 0. Thus, if f ∈ Z ti (M), we have ϑt0(f ) = at,iϑ
t (f ) and we can

put J (f ) = at,if concluding that ρ0,i is weakly Hamiltonian (i.e., there exists a momentum
map of this action given by

〈
J t

0,i (x), f
〉

:= J (f )(x) = at,if (x)).

7
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The following calculation shows that ρ0,i is in fact Hamiltonian (i.e., the momentum
map is Poisson): {J (f ),J (g)}t = a2

t,i{f, g}t = at,i(at,i{f, g}t + bt,i{f, g}ti ) = at,i{f, g}t0 =
J ({f, g}t0), f, g ∈ Z ti (M). �

Remark 2.3.2. It follows from the proposition above that the action ρ0,i preserves the bi-
Hamiltonian structure Θ . So does the restriction ρzi of this action to a finite-dimensional
subalgebra zi ⊂ Z ti (M).

However in general the action ρzi can be non-Hamiltonian with respect to ϑti , for instance
it can have orbits which are transversal to the symplectic leaves of ϑti . Moreover, if we restrict
the action ρzi to a stabilizer of a particular symplectic leaf of ϑti , this restriction can be only
weakly Hamiltonian (i.e., the corresponding momentum map can be non-Poisson). The forms
γzi ,x from the main theorem are related to the so-called nonequivariance cocycles Ortega and
Ratiu (2004) and da Silva and Weinstein (1999) of this action.

Remark 2.3.3. The functions from E((zi )∗) regarded as functions on M (see theorem 2.2.10)
can be interpreted as the Noetherian integrals corresponding to the symmetry given by the
action ρzi . Note that the collection

(
J t

0,i

)∗
(E((zi )∗) of these Noetherian integrals does not

depend on t ∈ K
2\EΘ . This follows from the form of the momentum map (see proposition

2.3.1).

3. Auxiliary linear algebra

3.1. Linear algebra of skew-symmetric bilinear forms: some definitions and facts

Definition 3.1.1. Let V be a vector space over C. A 2-form on V is a skew-symmetric
bilinear map ω : V × V → C. Given a subspace W ⊂ V , we put W⊥ω := {v ∈ V | ∀w ∈
W : ω(v,w) = 0} and say that W⊥ω is a skew-orthogonal complement to W . We also put
ker ω := V ⊥ω, corank ω := dim ker ω, rank ω := dim V − corank ω.

A 2-form ω is called symplectic or nondegenerate if ker ω = {0}.
Definition 3.1.2. Given a vector space V , a 2-form ω on V and a subspace W ⊂ V , we say
that W is (co)isotropic with respect to ω if W ⊂ W⊥ω (W ⊃ W⊥ω). An isotropic subspace
W ⊂ V is said to be maximal isotropic if it is not contained in any larger isotropic subspace.

The following lemmas are consequences of the ‘linear algebraic Darboux theorem’
(saying that for any 2-form ω there exists a basis e1, . . . , ek of the space V ∗ such that
ω = e1 ∧ e2 + · · · + er−1 ∧ er , where r = rank ω). We leave them without proof.

Lemma 3.1.3. Let V be a vector space with a 2-form ω and let V ⊂ W be a subspace. Then
the following conditions are equivalent:

(1) W is maximal isotropic with respect to ω;
(2) W = W⊥ω;
(3) W is isotropic and dim W = corank ω + (1/2)rank ω = (1/2)(corank ω + dim V ).

Lemma 3.1.4. Given a symplectic vector space (V , ω) and a subspace W ⊂ V , let I ⊂ W be
a subspace which is maximal isotropic with respect to ω|W . Then I is maximal isotropic with
respect to ω itself if and only if W is co-isotropic.

Lemma 3.1.5. Let V = ⊕k
i=1 Vi and ω be a 2-form on V such that ω(Vi, Vj ) = 0, i 	= j . Let

W ⊂ V is a subspace such that W = ⊕k
i=1 Wi , where Wi := W ∩ Vi . Then W is maximal

isotropic with respect to ω if and only if Wi is maximal isotropic with respect to ω|Vi
for any

i = 1, . . . , n.

8
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Lemma 3.1.6. Given a symplectic vector space (V , ω) and a subspace W ⊂ V , the following
inequality holds:

dim W + corank ω|W � dim V.

Moreover, a subspace W ⊂ V is co-isotropic if and only if

dim W + corank ω|W = dim V.

3.2. Linear algebra of pencils of bivectors: formulation of main results

We assume further on that the ground field is C. A bivector b on a vector space V is an element
of
∧2

V . We will view a bivector b sometimes as a skew-symmetric map V ∗ → V (then its
value at x ∈ V ∗ will be denoted by b(x)) and sometimes as a skew-symmetric bilinear form
on V ∗ (then its value at x, y ∈ V ∗ will be denoted by b(x, y)).

Definition 3.2.1. Let V be a vector space and b(1), b(2) be linearly independent bivectors on
V . The family of bivectors B := {bt }t∈C

2 , bt := t (1)b(1) +t (2)b(2), t := (t (1), t (2)), will be called
a pencil of bivectors on V . We say that a pencil B is Kronecker if rank bt = const, t ∈ C

2\{0}
(or, equivalently, there are no Jordan blocks in the JK decomposition of the pair b(1), b(2) see
subsection 3.3).

Definition 3.2.2. Let B := {bt }t∈C
2 be a pencil of bivectors on V . Put EB = {t ∈

C
2 | rank bt < maxt∈C

2 rank bt }. This set is called exceptional for B. It is clear that either
EB = {0} (Kronecker case) or EB = Span{t1} ∪ · · · ∪ Span{tn}, where ti are pairwise
nonproportional. We shall say that the values of t in EB are exceptional and the other
ones are generic. The same terms will be used for the corresponding bivectors bt . We put
Zt := ker bt ⊂ V ∗ and ZB := Span

(⋃
t 	∈EB

Zt
)
.

The ‘main lemma’ of the theory of bi-Hamiltonian structures is as follows.

Lemma 3.2.3. Let B = {bt }t∈C
2 be a pencil of bivectors on V . Then

(1) for any t ∈ C
2 and any linearly independent elements t ′, t ′′ ∈ C

2 we have bt (Zt ′ , Zt ′′) =
0;

(2) for any t ∈ C
2 and any t ′ ∈ C

2\EB we have bt (Zt ′ , Zt ′) = 0; in particular
bt (ZB,ZB) = 0.

Proof.

(1) Obviously there exist c′, c′′ ∈ C such that bt = c′bt ′ + c′′bt ′′ . Let z′ ∈ Zt ′ , z′′ ∈ Zt ′′ . Then
bt (z′, z′′) = c′bt ′(z′, z′′) + c′′bt ′′(z′, z′′) = 0.

(2) Let z′, z′′ ∈ Zt ′ . Then there exists a sequence (tn)n∈N, tn ∈ C
2\EB , such that tn is linearly

independent with t ′ and limn→∞ tn = t ′, and a sequence (zn)n∈N, zn ∈ Ztn , such that and
limn→∞ zn = z′′. We have bt (z′, zn) = 0 by item 1 and bt (z′, z′′) = 0 by continuity. �

From now on let us assume that EB = Span{t1} ∪ · · · ∪ Span{tn}, where ti are pairwise
nonproportional and that t0 ∈ C

2 is a fixed generic element.

Remark 3.2.4. It follows from the ‘main lemma’ that, if I i ⊂ Zti are isotropic with respect to
the restriction of bt0 to Zti , i = 1, . . . , n, then the subspace I := I 1 + · · · + I n + ZB is isotropic
with respect to bt0 . Indeed, bt0(ZB,ZB) = 0, bt0(ZB, I i) = 0, bt0(I i, I j ) = 0 for i 	= j and
bt0(I i, I i) = 0 for any i.

9
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The linear algebraic counterpart (theorem 3.2.6) of our main theorem deals with the
isotropic subspace I. It generalizes the following classical result.

Theorem 3.2.5. Bolsinov (1992) The isotropic subspace ZB is maximal isotropic with respect
to bt0 if and only if the pencil B is Kronecker.

Let a pencil B of bivectors on V be given and let a subspace zi ⊂ Zti be chosen for any
i ∈ {1, . . . , n}. Introduce the subspaces

z0,i := {z ∈ zi | ∃w ∈ V ∗: bt0(z) = bti (w)}, i = 1, . . . , n, (3.1)

and the skew-symmetric forms

γzi :
∧2

z0,i → C, γzi (z1, z2) := bti (w1, w2), (3.2)

where wj ∈ V ∗ are any elements such that bt0(zj ) = bti (wj ), j = 1, 2. Note that these forms
are correctly defined. Indeed, if w′

j are another elements with bt0(zj ) = bti (w′
j ), we have

vj := wj − w′
j ∈ Zti and bti (w′

1, w
′
2) = bti (w1 + v1, w2 + v2) = bti (w1, w2).

Theorem 3.2.6. Let a pencil B of bivectors on V be given and EB = Span{t1}∪· · ·∪ Span{tn}, ti
being pairwise nonproportional. Fix t0 ∈ C

2, a generic element, and assume that
ii ⊂ zi , i = 1, . . . , n, is a maximal isotropic subspace with respect to bt0 |zi . Then the
following conditions are equivalent.

(1) The isotropic subspace I := i1 + · · · + in + ZB ⊂ V ∗ is maximal isotropic with respect to
bt0 .

(2) corank bt0 |zi + corank bt0 = 2 dim z0,i − dim zi − rank γzi + corank bti , i ∈ {1, . . . , n}.
The proof of this theorem as well as of the next one is postponed to subsection 3.3.

Theorem 3.2.7. In the hypotheses of theorem 3.2.6, the isotropic subspace Iis maximal
isotropic with respect to bt0 if one of the following conditions holds:

(1) corank bt0 = dim z0,i − dim zi − rank γzi + corank bti , i ∈ {1, . . . , n}.
(2) corank bt0 = corank bt0 |zi − dim zi + corank bti , i ∈ {1, . . . , n}.

3.3. Linear algebra of pencils of bivectors: the Jordan–Kronecker decomposition and the
proof of the main results

In this section we will exploit the following notation: given a l × m-matrix M, we will write

M̃ for the skew-symmetric (l + m) × (l + m)-matrix
( 0 M

−MT 0

)
.

The following basic theorem (Gelfand and Zakharevich 1989, Gelfand and Zakharevich
1993) describes the algebraic structure of a pair of bivectors on a vector space.

Theorem 3.3.1. Given a finite-dimensional vector space V over C and a pair of bivectors
(b(1), b(2)), b(i) :

∧2
V ∗ → C, there exists a direct decomposition V ∗ = ⊕k

m=1V
∗
m such that

b(i)(V ∗
l , V ∗

m) = 0 for i = 1, 2, l 	= m, and the triples
(
V ∗

m, b(1)
m , b(2)

m

)
, where b(i)

m := b(i)|V ∗
m

are
from the following list.

(1) The Jordan block j2jm
(λ). dim V ∗

m = 2jm and in an appropriate basis of V ∗
m the matrix of

b(i)
m is equal to Ã

(i)
jm

, i = 1, 2, where A
(1)
jm

= Ijm
(the unity jm × jm-matrix) and A

(2)
jm

= J λ
jm

(the Jordan jm × jm-block with the eigenvalue λ).
(2) The Jordan block j2jm

(∞). dim V ∗
m = 2jm and in an appropriate basis of V ∗

m the matrix

of b(i)
m is equal to Ã

(i)
jm

, i = 1, 2, where A
(1)
jm

= J 0
jm

and A
(2)
jm

= Ijm
.

10
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(3) The Kronecker block k2km+1. dim V ∗
m = 2km + 1 and in an appropriate basis of V ∗

m the
matrix of b(i)

m is equal to B̃i,km
, i = 1, 2, where

B1,km
=

⎛
⎜⎜⎝

1 0 0 . . . 0 0
0 1 0 . . . 0 0

. . .

0 0 0 . . . 1 0

⎞
⎟⎟⎠ ,

B2,km
=

⎛
⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .

0 0 0 . . . 0 1

⎞
⎟⎟⎠ (km × (km + 1)-matrices).

We will refer to the decomposition appeared in this theorem as to the Jordan–Kronecker
(JK for short) decomposition. Now we will use this theorem for studying the pencil of bivectors
generated by b(1), b(2).

Let B := {bt }t∈C
2 , bt := t (1)b(1) + t (2)b(2), be a pencil of bivectors on V and let

EB = Span{t1} ∪ · · · ∪ Span{tn}, where ti 	= 0 are pairwise nonproportional.
It follows from theorem 3.3.1 that there is a direct biorthogonal (i.e., orthogonal with

respect to both b(1) and b(2)) decomposition

V ∗ = J2 ⊕ J4 ⊕ · · · ⊕ K,

where Jm stands for the sum of the Jordan blocks of dimension m and K stands for the sum
of the Kronecker blocks involved in the JK decomposition of the pair b(1), b(2) (we will also
denote by J>m the sum of Jordan blocks of dimension greater than m in this decomposition).
Note that either of the components of this decomposition can be trivial (zero dimensional).

Introduce the following notations:

(1) Zi := Zti = ker bti , i = 1, . . . , n, Z := Z1 + · · · + Zn + ZB .
(2) Given t0, a generic value of the parameter, put Z0,i := {z ∈ Zi | ∃w ∈ V ∗: bt0(z) =

bti (w)}, i = 1, . . . , n, (in particular Z0,i = z0,i for zi := Zi , cf formula (3.1)).
(3) Put Γi := γZi (see formula (3.2)).

Lemma 3.3.2. Let t0 ∈ C
2 be a fixed generic element and let i ∈ {1, . . . , n} be fixed. Then

(1) There is a direct decomposition

Z = J2 ⊕ Z>2 ⊕ ZB; (3.3)

here Z>2 := Z ∩J>2, dim Z>2 = 2j>2, where j>2 stands for the number of Jordan blocks
in J>2. Moreover dim ZB = 0 if and only if dim K = 0.

(2) There is a direct decomposition

Zi = Zi
2 ⊕ Zi

>2 ⊕ Zi
K;

here Zi
2 := Zi ∩ J2, dim Zi

2 = 2j2(λi), where j2(λi) is the number of Jordan blocks
j2(λi) with the eigenvalue λi = −t

(1)
i

/
t
(2)
i (or blocks j2(∞) in case t

(2)
i = 0) in the

JK decomposition; Zi
>2 := Zi ∩ J>2, dim Zi

>2 = 2j>2(λi) (with the self-explaining
notations); Zi

K := Zi ∩ K . Moreover, Zi
K ⊂ ZB and dim Zi

K = k, where k is the number
of Kronecker blocks in the JK decomposition.

(3) There is a direct decomposition

Z0,i = Zi
>2 ⊕ Zi

K = Zi
4 ⊕ Zi

>4 ⊕ Zi
K;

here Zi
4 := Zi ∩ J4, Z

i
>4 := Zi ∩ J>4. In particular, the subspace Z0,i does not depend

on the choice of the generic element t0.

11
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(4) The restriction of the 2-form bt0 to any Jordan block is symplectic. Moreover,
corank bt0 = k, ker bt0 |Zi = Z0,i and ker bt0 |Z = Z>2 ⊕ ZB .

(5) The form Γi |Zi
4

is nondegenerate. Moreover, rank Γi = dim Zi
4, ker Γi = Zi

>4 ⊕ Zi
K .

Proof. This lemma is proven by direct inspection. �

Lemma 3.3.3. Let I ⊂ V ∗ be an isotropic subspace with respect to bt0 such that ZB ⊂ I ⊂ Z.
Then I is maximal isotropic with respect to bt0 if and only if the following conditions hold.

(1) I = I2 ⊕ Z>2 ⊕ ZB , where I2 := I ∩ J2.
(2) J>2 = J4, i.e. there are no Jordan blocks of dimension greater than 4 in the JK

decomposition.
(3) I2 is maximal isotropic with respect to bt0 |J2 .

(Note that conditions 1 and 2 imply equality I = I2 ⊕ Z4 ⊕ ZB , where Z4 := Z ∩ J4.)

Proof. Assume I is maximal isotropic with respect to bt0 . Then the relations I ⊂ Z and
I = I⊥bt0 imply Z ⊃ I = I⊥bt0 ⊃ Z⊥bt0 . From this and from the formula ker bt0 |Z = Z∩Z⊥bt0

we have ker bt0 |Z = Z⊥bt0 . Since by lemma 3.3.2(4) ker bt0 |Z = Z>2 ⊕ ZB , we get
I ⊃ Z>2 ⊕ ZB . This inclusion and decomposition (3.3) imply condition 1.

Now we notice that decomposition (3.3) is orthogonal with respect to bt0 . By
lemma 3.1.5 the fact that I is maximal isotropic with respect to bt0 implies: (a) I2 is maximal
isotropic with respect to bt0 |J2 ; (b) Z>2 is maximal isotropic with respect to bt0 |J>2 ; (c) ZB

is maximal isotropic with respect to bt0 |K . Condition (a) coincides with condition 3 and
condition (c) is satisfied tautologically (this can be seen from the JK decomposition but this
also follows from theorem 3.2.5).

Now we will show that condition (b) implies condition 2. Indeed, assume the subspace
Z>2 is maximal isotropic with respect to bt0 |J>2 . Then in view of lemma 3.1.5 the intersection
of Z with any Jordan block j, dim j > 2, is maximal isotropic with respect to bt0 |j. By
lemma 3.3.2 this last form is symplectic and Z ∩ j is two dimensional. Thus dim j = 4.

Conversely, assume conditions 1, 2, 3 hold. Inverting the considerations above, we can
show that conditions (a), (b), (c) are satisfied and apply lemma 3.1.5 to deduce that I is maximal
isotropic with respect to bt0 . �

Lemma 3.3.4. Let zi ⊂ Zi be any subspace, i = 1, . . . , n. Then

(1) The following inequalities are satisfied for any i ∈ {1, . . . , n}:
(1a) rank Γi � dim Z0,i − corank bt0 ;
(1b) rank γzi � rank Γi;
(1c) corank bt0 |zi − 2 dim z0,i + dim zi � corank bti − dim Z0,i .

(2) Condition 2 of theorem 3.2.6 is satisfied if and only if the following three conditions are
satisfied simultaneously:

(2a) rank Γi = dim Z0,i − corank bt0 , i ∈ {1, . . . , n};
(2b) rank γzi = rank Γi, i ∈ {1, . . . , n};
(2c) corank bt0 |zi − 2 dim z0,i + dim zi = corank bti − dim Z0,i , i ∈ {1, . . . , n}.

Proof.

(1) Inequality (1a) is a consequence of lemma 3.3.2. Indeed, it follows from 3.3.2(4) that
corank bt0 equals the number of Kronecker blocks in the JK decomposition. On the
other hand, by 3.3.2(2) this number is equal to dimension of Zi

K = Zi ∩ K for any
i ∈ {1, . . . , n}. Hence, in view of 3.3.2(3,5) dim Z0,i − corank bt0 = dim Zi

4 + dim Zi
>4 =

rank Γi + dim Zi
>4.

12
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Inequality (1b) is obvious due to the equality γzi = Γi |z0,i .
Now we will prove inequality (1c). We have ker bt0 |Zi = Z0,i by lemma 3.3.2(4). Thus the
form bt0 induces a symplectic form ωi on the space Zi/Z0,i , i = 1, . . . , n. The subspace
zi ⊂ Zi induces a subspace zi := zi/(zi ∩ Z0,i ) = zi/z0,i of the space Zi/Z0,i . By
lemma 3.1.6 applied to the symplectic space (Zi/Z0,i , ωi) and the subspace zi ⊂ Zi/Z0,i

we conclude that

dim zi + corank ωi |zi � dim Zi/Z0,i . (3.4)

The left-hand side of this inequality equals dim zi + corank ωi |zi = 2 dim zi − rank ωi |zi =
2 dim zi−rank bt0 |zi = 2(dim zi−dim z0,i )−rank bt0 |zi = corank bt0 |zi +dim zi−2 dim z0,i .
For the right-hand side we obviously have dim Zi/Z0,i = dim Zi − dim Z0,i =
corank bti − dim Z0,i , which proves (1c).

(2) Assume first that conditions (2a), (2b), (2c) hold. Adding the corresponding equalities
we get the equality from condition 2 of theorem 3.2.6.

Conversely, assume condition 2 of theorem 3.2.6 holds. It follows from inequalities
(1a), (1b), (1c) that P := dim Z0,i − corank bt0 − rank Γi � 0,Q := rank Γi − rank γzi � 0,

R := corank bti − dim Z0,i − corank bt0 |zi + 2 dim z0,i − dim zi � 0. By condition 2 of
theorem 3.2.6 P + Q + R = 0. Hence P = 0,Q = 0, R = 0. �

Proof of theorem 3.2.6. (1 ⇒ 2) Let I = i1 + · · · + in + ZB be maximal isotropic. Then,
by lemma 3.3.3 we have (1) I = I2 ⊕ Z>2 ⊕ ZB ; (2) J>2 = J4; (3) I2 is maximal isotropic
with respect to bt0 |J2 . Condition (2) implies condition (2a) of lemma 3.3.4. Indeed, we
have mentioned in the proof of lemma 3.3.4 that dim Z0,i − corank bt0 = rank Γi + dim Zi

>4.
Condition 2) is equivalent to dim Zi

>4 = 0, hence also equivalent to (2a).
Now we will prove that condition (2b) is satisfied. Consider the space z := z1+· · ·+zn+ZB .

We have J2 ⊕ Z4 ⊕ ZB = Z ⊃ z ⊃ I ⊃ Z4 ⊕ ZB (the first equality follows from
lemma 3.3.2(1) and from condition (2)). Hence z = z2 ⊕ Z4 ⊕ ZB , where z2 := z ∩ J2. This
yields decompositions zi := zi

2 ⊕Zi
4 ⊕zi

K, i = 1, . . . , n, where zi
2 := zi ∩J2, z

i
K := zi ∩K , and

z0,i = Zi
4 ⊕ zi

K (cf lemma 3.3.2(3)). Thus, by lemma 3.3.2(5) we have rank Γi = dim Zi
4 =

rank Γi |z0,i = rank γzi .
Finally, we will use condition (3) to show that condition (2c) is satisfied. Moreover, we

will show that they are equivalent (provided that conditions (1) and (2) are satisfied). The
2-form bt0 |Zi

2
is symplectic by lemma 3.3.2(4). Condition (3) is equivalent via lemma 3.1.5

to the following: the subspace ii2 ⊂ zi
2 ⊂ Zi

2, where ii2 := ii ∩ J2, is maximal isotropic with
respect to bt0 |Zi

2
for any i. Lemma 3.1.4 implies (recall the assumption that ii is maximal

isotropic with respect to bt0 |zi ) that this last holds if and only if zi
2 is coisotropic with respect to

bt0 |Zi
2

for any i. This in turn is equivalent, in view of lemma 3.1.6, to the following condition:

dim zi
2 + corank bt0 |zi

2
= dim Zi

2, i = 1, . . . , n. (3.5)

Using the notations from the proof of lemma 3.3.4 and natural identifications zi
2 = zi , Zi

2 =
Zi/Z0,i , ωi = bt0 |Zi

2
, we can proceed as in this proof to conclude that condition (3.5) is

equivalent to condition (2c).
(2 ⇒ 1) Let condition 2 of theorem 3.2.6 hold. Then conditions (2a), (2b), (2c) are

satisfied by lemma 3.3.4.
We have seen in the first part of the proof that condition (2a) is equivalent to the equality

J>2 = J4.
Now we will show that the assumption that ii is maximal isotropic with respect to bt0 |zi

for any i together with condition (2b) imply the direct decompositions z = z2 ⊕ Z4 ⊕ ZB and
I = I2 ⊕ Z4 ⊕ ZB .
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Since the set ii is maximal isotropic with respect to bt0 |zi , it contains ker bt0 |zi .
Lemma 3.3.2(4) implies ker bt0 |zi ⊃ zi ∩Z0,i = z0,i , whence ii ⊃ z0,i . On the other hand, since
in view of lemma 3.3.2 (and equality J>2 = J2) we have Z0,i = Zi

4 ⊕ Zi
K and Zi

K = ker Γi ,
the equality from condition (2b) implies the equality z0,i + Zi

K = Z0,i . This equality together
with the inclusion ii ⊃ z0,i imply the relation z ⊃ I ⊃ Z4 + ZB , whence z = z2 ⊕ Z4 ⊕ ZB

and I = I2 ⊕ Z4 ⊕ ZB .
We have already proven that conditions (3) and (2c) are equivalent. Finally, I is an

isotropic subspace such that its components I2, Z4, Z
B are maximal isotropic with respect

to bt0 |J2 , b
t0 |J>2 , b

t0 |K , respectively. Now it remains to use lemma 3.1.5 to conclude that I is
maximal isotropic with respect to bt0 itself. �

Proof of theorem 3.2.7. We first notice that adding inequalities (1a), (1b) and (1c) from
lemma 3.3.4 we get the following inequality:

corank bt0 |zi + corank bt0 � 2 dim z0,i − dim zi − rank γzi + corank bti , i = 1, . . . , n.

(3.6)

Assume condition 1 of theorem 3.2.7 holds. Besides, we have corank bt0 |zi =
dim ker bt0 |zi � dim z0,i (since we have already shown the inclusion ker bt0 |zi ⊃ z0,i). Thus
we deduce from this and from condition 1 the inequality

corank bt0 |zi + corank bt0 � 2 dim z0,i − dim zi − rank γzi + corank bti , i = 1, . . . , n.

(3.7)

Combining this inequality with inequality (3.6) we see that condition 2 of theorem 3.2.6 is
satisfied, and hence we get the maximality of the isotropic subspace I.

Now assume condition 2 of theorem 3.2.7 is satisfied. Again combining it with the
inequality corank bt0 |zi � dim z0,i we get corank bt0 |zi + corank bt0 � dim z0,i + corank bt0 |zi −
dim zi + corank bti � 2 dim z0,i − dim zi + corank bti � 2 dim z0,i − dim zi − rank γzi +
corank bti , i = 1, . . . , n. Thus we have come to inequality (3.7) once more and we can
proceed as above. �

4. Application to Lie pencils

4.1. Lie pencils with symmetries

In this section we apply the results of section 2 to pencils consisting of linear Poisson structures.
All Lie algebras considered below will be finite dimensional and defined over C. Let g

be a vector space and [ , ](i) : g × g → g, i = 1, 2, a bilinear operation.

Definition 12. Assume [ , ]t := t (1)[ , ](1) + t (2)[ , ](2) is a Lie algebra structure on g for any
t = (t (1), t (2)) ∈ C

2. We say that the Lie brackets [ , ](1), [ , ](2) are compatible and that
� := (g, {[ , ]t }t∈C

2) is a Lie pencil. We put gt := (g, [ , ]t ) for short.

Given a Lie pencil �, we have the pencil Θ� = {ϑgt } of the Lie–Poisson structures on
the dual space g∗. We will write ϑt for ϑgt for short.

Definition 4.1.2. A Lie pencil will be called admissible if the corresponding Poisson pencil Θ�

is admissible (see definition 2.2.5). From now on we will consider only admissible Lie pencils
such that the corresponding exceptional set E� := EΘ�

is equal to Span{t1} ∪ · · · ∪ Span{tn}.
We assume that the exceptional elements t1, . . . , tn are pairwise nonproportional and we call
exceptional also the corresponding Lie algebras gti , i = 1, . . . , n.

14
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Put zi for the center of the exceptional algebra gti . It is shown in Trofimov and Fomenko
(1995, proposition 4, section 44) that zi is a Lie subalgebra in gt for any t. Now we are ready
to formulate our main theorem about Lie pencils. We recall that the index indg of a Lie algebra
g is the codimension of a regular coadjoint orbit.

Theorem 4.1.3. Let � := {gt }t∈C
2 be an admissible Lie pencil and let Θ := Θ� = {ϑt }

stand for the corresponding bi-Hamiltonian structure on g∗. We assume that the set of Casimir
functions Z t (g∗) is complete as a set of Casimir functions (see definition 2.1.2) for an infinite
number of pairwise nonproportional generic values of t. Fix a generic t0 ∈ C

2.
Let Ii ⊂ E((zi )∗), i = 1, . . . , n, be an involutive set of functions which is complete as

an involutive set of functions (see definition 2.1.3) with respect to ϑzi , where zi is endowed
with the Lie algebra structure induced from gt0 . Let ZΘ(g∗) be the involutive set of functions
defined in corollary 2.2.9 and let πj : g∗ → (zj )∗ be the canonical projection.

Then the following conditions are equivalent.

(1) The involutive set of functions I := π∗
1 (I1) + · · · + π∗

n (In) + ZΘ(g∗) is complete as an
involutive set of functions with respect to ϑt0 .

(2) There exists a point x ∈ g∗ such that for any i = 1, . . . , n,

ind zi + ind gt0 = 2 dim z0,i
x − dim zi − rank γzi ,x + ind gti , (4.1)

where the vector space z0,i
x is defined as z0,i

x := {
v ∈ zi | ∃w ∈ g:

(
adt0

v

)∗
x =(

adti
w

)∗
x
}
, adti

wu := [w, u]ti , u ∈ g, the 2-form γzi ,x on z0,i
x is defined as γzi ,x(v1, v2) :=

〈[w1, w2]ti , x〉, w1, w2 ∈ g being any elements such that
(
adt0

vj

)∗
x = (adti

wj
)∗x, j = 1, 2.

Proof. We first note that equalities (2.4) are satisfied at some point x ∈ g∗ if and only if they are
satisfied at all points from some Zariski open set U in g∗. Shrinking U if needed we may assume
that U does not intersect the singular sets Sing ϑt0 and Sing ϑti , π−1

i (Sing ϑzi ), i = 1, . . . , n.
Thus for any x ∈ U we have corank ϑt0

x = ind gt0 , corank ϑt0
x |zi

x
= ind zi , corank ϑti

x = ind gti .
Since zi consist of elements of g, i.e. linear functions on g∗, we have dim zi

x = dim zi

for any x. Finally, we recall that by definition ϑti
x (v) = (

adti
v

)∗
x, i = 0, . . . , n, for any

x ∈ g∗, v ∈ g ∼= T ∗
x g∗.

With these remarks the proof is a direct consequence of theorem 2.2.10. �

Theorem 4.1.4. In the assumptions of theorem 4.1.3, the involutive set of functions I is
complete as an involive set of functions with respect to ϑt0 if there exists x ∈ g∗ such that one
of the following two conditions hold:

(1) ind gt0 = dim z0,i
x − dim zi − rank γzi ,x + ind gti , i ∈ {1, . . . , n}; (4.2)

(2) ind gt0 = ind zi − dim zi + ind gti , i ∈ {1, . . . , n}. (4.3)

Proof. The proof follows from theorem 2.2.11. �

Remark 4.1.5. Condition (4.3) (which is independent of x ∈ g∗) coincides with the sufficient
condition of Bolsinov (Trofimov and Fomenko 1995, proposition 7, section 44) (see also
Introduction).

Now we will indicate some class of Lie pencils which satisfy assumptions of
theorem 4.1.3.

Lemma 4.1.6. Let a Lie pencil � = {gt }t∈C
2 on a vector space g be such that for some t0 ∈ C

2

the Lie algebra gt0 is semisimple. Then � satisfies the assumptions of theorem 2.2.10.
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Proof. Since gt0 is semisimple we have H 2(gt0,gt0) = 0, where we denote by H 2(gt0 , gt0) the
second cohomology with coefficients in the adjoint module. Then it follows from the general
theory of deformations of Lie algebras (Nijenhuis and Richardson 1967, theorem 7.2) that
the orbit of gt0 in the space of all Lie algebra structures on g under the action of GL(g) is
Zariski open. In particular, the intersection of this open set with the two-dimensional vector
space � is Zariski open in �. Thus the complement C to this set in � is closed, and, being
homogeneous, is either zero or a finite union of lines.

It is known that for a semisimple Lie algebra g the algebraic set Sing g of all adjoint
orbits of dimension less than the maximal one is of codimension at least 3. Thus we have
codim Sing gt � 3 for any t ∈ C

2\C (since by the considerations above gt ∼= gt0 ) and the
codimension of the variety S := ⋃

t∈C
2\C Singgt is greater than or equal to 2.

We conclude that for x from the open dense set g\S the exceptional set EΘ�
(x) does not

depend on x (indeed, corank ϑt
x = rank gt0 , in particular EΘ�

(x) ⊂ C). Hence Θ� and �

itself are admissible.
The assumption of theorem 4.1.3 related to Casimir functions is also satisfied. Indeed,

the considerations above show that for t ∈ C
2\C the Lie algebra gt is semisimple. Now the

completeness of the set of global Casimir functions for the semisimple Lie algebra gt is the
standard fact (they are invariant polynomials and there are rank gt functionally independent
invariant polynomials on gt ). �

4.2. Applications of the main theorem to Lie pencils of the Kantor–Persits type

The aim of this section indicates a class of Lie pencils for which condition 2 of theorem 4.1.3
is satisfied.

Introduce the following notation: if X,A, Y ∈ gl(n, C), put [X, Y ]A := XAY − YAX.
Write In for the identity n × n-matrix. It is easy to see that the following families are Lie
pencils

(gl(n, C), [ , ]t (1)In+t (2)A)(t(1),t (2))∈C
2 , A ∈ gl(n, C), (4.4)

(so(n, C), [ , ]t (1)In+t (2)A)(t(1),t (2))∈C
2 , A ∈ symm(n, C), (4.5)

(sp(n, C), [ , ]t (1)I2n+t (2)A)(t(1),t (2))∈C
2 , A ∈ m(n, C). (4.6)

Here symm(n, C) is the space of symmetric n×n-matrices, sp(n, C) = {X ∈ gl(2n, C) | XJ +
JXT = 0} is the symplectic Lie algebra, m(n, C) := {X ∈ gl(2n, C) | XJ − JXT = 0} is its
orthogonal complement in gl(2n, C) with respect to the ‘trace form’, the matrix A is fixed.

Definition 4.2.1. The Lie pencils given by formulae (4.4), (4.5) and (4.6) will be called of
Kantor–Persits (KP for short) type.

Remark 4.2.2. These Lie pencils appeared in the paper Kantor and Persits (1988) (see also
Trofimov and Fomenko 1995, section 44).

We put N :=

⎡
⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0

· · ·
0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎦ to be the standard nilpotent (n × n)-matrix. It is

known from linear algebra that the operator in the complex Euclidean space of dimension n
which has such a matrix in the so-called normal base, i.e. the base with the Gramm matrix

Gn :=

⎡
⎢⎣

0 0 · · · 0 1
0 0 · · · 1 0

· · ·
0 1 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎦, is symmetric. In particular, if Qn is the transition matrix from the

16
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normal to the orthonormal base, that is QnGnQ
T
n = In, then the matrix Ñ := QnNQ−1

n is a
symmetric nilpotent matrix.

Given a n × n-matrix X we put X̂ := [X 0

0 XT

]
((2n × 2n)-matrix). We will also exploit

the notation diag(D1,D2) for the block-diagonal matrix with the square blocks D1,D2 on the
diagonal.

Proposition 4.2.3. Let a Lie algebra g and a matrix A be from the following list:

(a) g = gl(n, C) and A = Nk, k � n;
(b) g = so(n, C) and A = Ñk, k � n;
(c) g = sp(n, C) and A = N̂k, k � n.

Consider the Lie pencil � := {(g, [ , ]t (1)In+t (2)A)}. Then

(1) The only (up to proportionality) exceptional Lie algebra in this pencil is gt1 := (g, [ , ]A)

(here t1 = (0, 1)).
(2) The Lie algebra gt1 is isomorphic to the Lie algebra (g, [ , ]P ), where P := diag(In−k, 0k)

in cases a, b, and to the Lie algebra (g, [ , ]P̂ ) in case c. In particular, ind gt1 =
ind gl(n, C)− ind gl(k, C)+dim gl(k, C) in case a, ind gt1 = ind so(n, C)− ind so(k, C)+
dim so(k, C) in case b, and ind gt1 = ind sp(n, C) − ind sp(k, C) + dim sp(k, C) in
case c.

(3) The center z1 of the Lie algebra gt1 has dimension equal to dim gl(n, C) = k2 in case
a, to dim so(k, C) = k(k − 1)/2 in case b, and to dim sp(k, C) = 2k2 + k in case c. If
k � n/2, z1 is an Abelian subalgebra of (g, [ , ]).

(4) If k � n/2 and t0 = (1, 0), the subspace z0,1
x = {

v ∈ z1 | ∃w ∈ g:
(
adt0

v

)∗
x = (

adt1
w

)∗
x
} ⊂

z1 coincides with the whole z1.
(5) If k = n/2, the rank of the skew-symmetric form γz1,x for generic x ∈ g∗ is equal to

dim gl(k, C) − ind gl(k, C) in case a, to dim so(k, C) − ind so(k, C) in case b, and to
dim sp(k, C) − ind sp(k, C) in case c.

(6) If k = n/2, the Lie pencil � satisfies condition (4.1) and the weaker condition (4.2). It
does not satisfy condition (4.3) in case c, and if 1 < k = n/2 (respectively 2 < k = n/2)
also in case a (respectively b).

Proof.

(1) If t is nonproportional to (0, 1), the map X �→
√

t (1)In + t (2)AX
√

t (1)In + t (2)A,X ∈ g,
is an isomorphism of the Lie algebras (g, [ , ]) and (g, [ , ]t (1)In+t (2)A).

(2) Case a. The isomorphism is realized by [X, Y ]Nk = L−1[LX,LY ]P , where L : g → g

is an invertible map given by LX := CX,C := [ 0 In−k

Ik 0

]
. The index of the Lie algebra

(g, [ , ]P ) is equal to ind gl(n, C) − ind gl(k, C) + dim gl(k, C) = k2 + (n − k) (this can
be proven, for instance, using the generalized Raı̈s formula (Panasyuk 2008).

Case b. The isomorphism is realized by [X, Y ]P = L−1[LX,LY ]Ñk , where L : g → g is

an invertible linear map given by LX := QnGnR
T
n−kX(QnGnR

T
n−k)

T , Rn−k := [Qn−k 0

0 Ik

]
.

Indeed, L−1((LX)Ñk(LY )) = XRn−kGnQ
T
n ÑkQnGnR

T
n−kY = XRn−kN

kGnR
T
n−kY

(we used the obvious equalities GT
n = Gn and GnQ

T
n Qn = In). Hence L−1[LX,LY ]Ñk =

[X, Y ]Rn−kNkGnR
T
n−k

. On the other hand, it is easy to see that NkGn = [Gn−k 0

0 0

]
and, since

Qn−kGn−kQ
T
n−k = In−k , we get Rn−kN

kGnR
T
n−k = P .
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The structure of the Lie algebra gP was studied by Bolsinov (Trofimov and Fomenko
1995, section 44). In particular, (1) its center is isomorphic to the subalgebra so(k, C)

and is of dimension k(k − 1)/2; (2) its index is equal to ind so(n, C) − ind so(k, C) +
dim so(k, C).

Case c. The isomorphism is realized by [X, Y ]N̂k = L−1[LX,LY ]P̂ , where L : g → g is

an invertible linear map given by LX := ĈX,C := [ 0 In−k

Ik 0

]
.

The Lie algebra gP was also studied by Bolsinov (Trofimov and Fomenko 1995,
section 44). In particular, (1) its center is isomorphic to the subalgebra sp(k, C) and is of
dimension 2k2 + k; (2) its index is equal to ind sp(n, C) − ind sp(k, C) + dim sp(k, C).

(3) The dimension of z1 is clear from the proof of the preceding item. The fact that this is an
Abelian subalgebra for k � n/2 follows from the representation z1 = {Qn−kvQn−k | v ∈ g},
where Q := N in case a, Q := Ñ in case b, Q := N̂ in case c.

(4) We have mentioned that z1 = {Qn−kvQn−k | v ∈ g}. On the other hand, direct calculations
show that adt1

Qn−kvQn−2k+Qn−2kvQn−k = adt0
Qn−kvQn−k for any v ∈ g.

(5) By definition, given x ∈ g∗, we have: γz1,x(Q
n−kvQn−k,Qn−kwQn−k) = 〈[v′, w′]Qk , x〉,

where v′ := Qn−kvQn−2k + Qn−2kvQn−k, w′ := Qn−kwQn−2k + Qn−2kwQn−k .

Case a. Introduce the following block-matrices: v := [∗ ∗
V ∗

]
, w := [ ∗ ∗

W ∗
]
, where V,W

are arbitrary (k × k)-matrices. It is easy to see that v′ = [V ∗
0 V

]
, w′ = [W ∗

0 W

]
and

[v′, w′]Nk = [0 [V,W ]
0 0

]
. Thusγz1,x(N

n−kvNn−k, Nn−kwNn−k) = 〈[0 [V, W ]
0 0

]
, x
〉
. In other

words, for generic x, the rank of the form γz1,x coincides with the rank of the Kirillov
form 〈[V,W ], x̃〉 on the Lie algebra gl(k, C), where x̃ ∈ gl(k, C)∗ is also generic, i.e.
rank γz1,x = dim gl(k, C) − ind gl(k, C).

Cases b and c. The proofs are similar to that in case a but more cumbersome, so we skip
them.

(6) Direct calculation. �

Remark 4.2.4. Retain the notations of proposition 4.2.3. Let Θ := Θ� be the Poisson pencil
corresponding to the Lie pencil � and let ϑt0 be the standard Lie–Poisson structure on g∗.
Let I1 ⊂ E((z1)∗) be an involutive set of functions which is complete as an involutive set of
functions (see definition 2.1.3) with respect to ϑz1 , where z1 is endowed with the Lie algebra
structure induced from gt0 .

Then it follows from this proposition and from theorem 4.1.3 that, if n is even and k = n/2,
the involutive set of functions π∗

1 (I1) + ZΘ(g∗) is complete as an involutive set of functions
with respect to ϑt0 in all the three cases.

4.3. One explicit example

In this example we indicate explicitly the commuting functions generating the family
π∗

1 (I1) + ZΘ(g∗) in the case of the Lie pencil of the KP type on

g := sp(4, C) =

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

a11 a12 b11 b12

a21 a22 b12 b22

c11 c12 −a11 −a21

c12 c22 −a12 −a22

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ ,
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which was considered in the previous subsection. This is the lowest dimensional case of a KP
pencil for which the Bolsinov sufficient condition (4.3) is not satisfied but the more general
sufficient condition (4.2) is satisfied.

The Lie algebra z1 consists of matrices of the form

⎡
⎣0 a b 0

0 0 0 0
0 0 0 0
0 c −a 0

⎤
⎦, i.e. an Abelian three-

dimensional Lie algebra. Thus the set I1 is generated by some linear coordinates g1, g2, g3

on z∗.
The Lie algebra g is ten dimensional and has index 2, and hence the dimension of a generic

coadjoint orbit is 8. Therefore a complete involutive set of functions on g∗ will be generated by
six independent functions and we need to indicate only three independent functions from the
set ZΘ . Two of them, f1, f2, are independent Casimir functions of the Lie–Poisson structure,
the third one, H, the ‘Hamiltonian’, will be indicated below.

Put L(λ)X :=
√

I4 + λN̂ · X ·
√

I4 + λN̂, where N := [0 1
0 0

]
(see the notation introduced

before proposition 4.2.3). It is easy to see that
√

I4 + λN̂ = Q̂,Q := [1 λ/2
0 1

]
and that

(L(λ))−1[L(λ)X,L(λ)Y ] = [X, Y ]I4+λN̂ , λ ∈ C.
The set ZΘ is generated by the Casimir functions of the generic brackets of the pencil,

in other words, by the functions of the form fi(((L(λ))∗)−1x), i = 1, 2, or by the coefficients
of their Taylor expansions with respect to λ. Since we need only one function, we can put
H(x) := − ∂

∂λ

∣∣
λ=0f1(((L(λ))−1)∗x), x ∈ g∗, where f1 is a quadratic Casimir function.

Identifying g with g∗ by means of the ‘trace form’ (X, Y ) := Tr(XY ) we can
choose f1(X) = Tr(X2), f2(X) = Tr(X4), g1 = a21, g2 = c11, g3 = b22 and we have
H = Tr(L(X) · X), where L = d

dλ

∣∣
λ=0L(λ) is given by L(X) = 1

2 (N̂X + XN̂). It is easy to
calculate that H = 2(a11a21 + b12c11 + a22a21 + b22c12).
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